# **CERTS Microgrid**

#### Microgrid Workshop

17 June 2005

**Bob Lasseter** 

Representing the research team of:

LBNL, SNL

University of Wisconsin

Northern Power Systems

Tecogen

Youtility Inc

American Electric Power





## **Generic Microgrid:**

- Clusters sources with loads
- Single controllable unit to utility
- Smoothly move between parallel and islanded modes





University-of-Wisconsin's µgrid



## **Major Microgrid Issues**

- Stability (interactions between grid and other microsources)
- Power balance when islanding (load sensors & fast re-dispatch of microsource)
- Custom site engineering





## **Stability:** Fixed Power Factor



DG A

- Change in power output changes ΔV
- \* Resulting in change in μsource current
- **Can result in change in ΔV**
- Oscillation in P and V



Need to control voltage at each inverter

DG B



### **CERT's Q versus E Droop for stability**





$$E_{o} = E_{req} - m_{Q}Q$$

$$m_{Q} = \frac{\Delta E}{Q_{max}}$$

► Voltage difference between sources is function of impedance and current between them.



#### **UW's µgrid traces: Voltage Regulation**









Unit P₁

Unit P<sub>2</sub>



## **Major Microgrid Issues**

- Stability (interactions between grid and other microsources)
- Power balance when islanding (load sensors & fast re-dispatch of microsource)
- Custom site engineering





#### Power balance Problem: Fast control



**EPRI: Campus Microgrid System: CEC Workshop** 

THE UNIVERSITY

MADISON



#### **CERTS MicroGrid**

120 kV





❖Power balancing using

local information RTS

# **CERTS Microgrid Configuration**



- Separate load types (sensitive)
- Fast islanding switch
- Single PCC (1547 LAPS)
- No load control required





## **Operational Concept**



- Intentional islanding
- No communications for load balancing
- Load balancing uses local information at each unit
- Automatic re-synchronizing of the fast switch





### Load balancing: P versus Frequency Droop



Event shows Unit 2 reaching maximum output power after islanding.

#### Control of P<sub>1</sub> and P<sub>2</sub>

|                     | ● A – Grid | ■ – Island |
|---------------------|------------|------------|
| P <sub>1</sub> [pu] | 0.08 = 10% | 0.4 = 50%  |
| P <sub>2</sub> [pu] | 0.72 = 90% | 0.8 = 100% |
| Frequency<br>[Hz]   | 60.00      | 59.8       |
| Load Level [pu]     | 1.2 = 150% | 1.2 = 150% |
| Grid Flow [pu]      | 0.4 = 50%  | 0.0        |



#### Wisconsin's µgrid traces: Islanding



Unit 1

Unit 2





#### **Zone Control: Load Tracking**



$$m_F = \frac{\Delta \omega}{P_{\text{max}}}$$

$$\omega_i = \omega_o - m_F (F_{o,i} - F_i)$$





Series Configuration





#### Zone Power Control: Parallel Case: $F_1 = -F_2$



Event shows Unit 2 backing off from maximum output power after a load is removed.

#### Parallel Configuration, Control of F<sub>1</sub> and F<sub>2</sub>

|                     | $A-L_3$ on | $B-L_3$ off |
|---------------------|------------|-------------|
| P <sub>1</sub> [pu] | 0.4 = 50%  | 0.13 = 16%  |
| P <sub>2</sub> [pu] | 0.8 = 100% | 0.77 = 96%  |
| Frequency<br>[Hz]   | 59.80      | 59.968      |
| Load Level<br>[pu]  | 1.2 = 150% | 0.9 = 112%  |
| Grid Flow [pu]      | 0.0        | 0.0         |







### U of W's $\mu$ grid traces: Parallel Case: $F_1 = -F_2$



Unit 1

Unit 2



# Import From Grid, Setpoints are 90% and 10% of Unit Rating; Choosing a Wrong Setpoint



# Dynamics of Units; Wrong Setpoint

Unit 1 Unit 2







## Summary of micro-source controls

# Existing DG controls; P at unity pf or constant Q

- High penetration levels create interaction problems
- Can not smoothly move between grid connected and island operation

#### **CERTS** controls

- Voltage control with droop
- Power versus frequency droop
- Automatic re-synchronizing to utility grid





## Microgrid Test Bed Layout



#### Grid connected

- Load changes
- Control of load flow
- Voltage control
- Protection
- P/V dispatch

#### Isolated operation

- Separation
- Load pick-up
- Voltage and Q control
- Protection
- Automatic re-syn.







## Microgrid Test Bed Timeline





# **Key Tests**

Load Flow control

Unit Power, Zone flow & Mixed

Grid-to-Island-to-Grid

Power vs. freq power balance Re-closing of the Static Switch using local information

Protection including Static Switch

Internal, grid side & IEEE 1547events



